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In structural problems, when dealing with uncertainties, the failure probability of the structure is estimated
subject to a particular performance criterion. However, when the failure of a structural system is governed by
multiple failure criteria, all of the measures have to be considered in the failure probability estimation. These failure
criteria are usually correlated, and the accuracy of the estimated structural failure probability highly depends on
the ability to model the joint failure surface. For example, in an aircraft structure, the stresses in each of the
members of a wing can be posed as limit-state functions, along with the displacements and the natural frequencies
of the wing. There are no criteria to disregard one limit state over the other, or to convert the system reliability
problem into component reliability (dealing with displacement, stress, and frequency individually). Each failure
criterion is modeled as a limit-state function for the reliability analysis, which is an implicit function of the random
variables. The evaluation of this limit state often requires an expensive finite element simulation or a computational
fluid dynamics simulation. Therefore, to predict the failure probability of a structural system efficiently, function
approximations for the limit states are considered. An accurate way of defining highly nonlinear functions is
presented using a new class of approximations. These approximations are used in conjunction with the Monte
Carlo simulation to estimate the structural failure probability. Numerical examples are presented to show the

applicability of the proposed method.

Introduction

STRUCTURE typically consists of many components, each

of which has the potential to fail, and the individual compo-
nent failure might lead to structural failure. Even in simple struc-
tures composed of just one element, various failure modes such as
bending action, buckling, axial stress, temperature, frequency, etc.,
may exist and be relevant to the solution. The composition of many
elements in structures is referred to as a “structural system,” and a
system may be subject to many forms of loads, either single or in
various combinations. Therefore, the reliability analysis of struc-
tural systems will involve consideration of multiple and perhaps
correlated limit states that can be defined in any discipline. Each
limit state is an implicit function and requires expensive computer
time to evaluate the function value and the gradientsrequired for the
reliability analysis. Therefore, the presence of multiple limit states
increasesthe computationaleffortinvolvedin the failure probability
estimation process.

The system failure probabilityis an integration of the joint proba-
bility density function (PDF) over the joint failure domain obtained
by the intersection of all of the limit states. The joint PDF is an
implicit function and can be evaluated numerically using Monte
Carlo simulation. However, this would require a large number of
exact functionevaluations, which would come from expensive finite
element analysis (FEA) or computational fluid dynamics (CFD)
simulations. The costinvolvedin the simulationsrenders the Monte
Carlo simulation unsuitable for most of the practical structural re-
liability problems. Therefore, alternative methods are required to
estimate the structural failure probability.

The mostcommonly usedclassificationsfor the structuralsystems
are 1) series systems and 2) parallel systems.! The series systems are
thosein which, evenif one componentfails to performsatisfactorily,
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the whole system will fail. This is also called a weakest-link model.
Because every component is required to function satisfactorily for
the system to be reliable, the failure probability of every component
is estimated using various approximation techniques. In this paper,
the first-order reliability method (FORM)? is used to estimate the
component failure probability to compare the results with the pro-
posedmethod. Itis evident that a statically determinate structureis a
series system because the failure of any one of its members implies
the failure of the structure.

In the case of a parallel system, the system survives even if one
componenthas failed. The system fails to functionsatisfactorilyonly
when every component of the system has failed to function satis-
factorily. Parallel systems are sometimes referred to as redundant
systems. There are two types of redundancies: active redundancy
and passiveredundancy. Active redundancy occurs when redundant
elements actively participatein structural behavior, even during low
loading. Passive redundancy occurs when the redundant elements
do not come into play until the structure has suffered a sufficient
degree of degradation or failure of its elements. A system that is
a combination of both series and parallel components is called a
mixed system.

In structural system reliability analysis, the bound methods and
numerical integration methods have practical significance. If the
components of the system are assumed independent, then the sys-
tem failure can be obtained easily. However, in practical problems,
the failure conditions depend on the same random variables; there-
fore, the components are correlated. Cornell® has developed bounds
on the system failure probability for systems subjected to multiple
failure modes. The upper bound on the system failure was obtained
by assuming perfectly correlated components, and this is obtained
as follows, with the upper bound on P equaling

Z[componentP/-] (1)

i

The lower bound is obtained by assuming statistically independent
components, with the lower bound on P, equaling

max[componentP] 2)
where n is the number of failure modes. If all of the components
are perfectly independent, then the failure probability bounds can
be obtained by the preceding lower and upper bound formulations.
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Fig.1 Joint failure region.

However, the component P, has to be quantified accurately to ob-
tain an accuratesystemreliability bound. To achieve better accuracy
compared to first- and second-ordermethods, the component failure
probability can be determined by using the high-quality approxima-
tion techniques developed by Penmetsa et al. in earlier work *

In FORM, the limit state is approximated with a linear function
at the most probable failure point (MPP). The MPP is the point on
the limit state that is nearestto the origin in a standard normal space
that is obtained by performing Rosenblatt transformatior® to the
random variables. Because of rotational symmetry and exponential
decay of the probability density in the standard normal space, the
MPP has the highest likelihood of failure among all points in the
failure domain. Therefore, the neighborhood of the MPP makes a
major contribution to the failure probability integral. This property
is the basis for FORM, which constructs an approximation to the
failure probability integral by using the tangent plane at the MPP
as the integration boundary. The second-order reliability method
(SORM) improves on this approximation with a quadratic surface
using the second-order gradients. In system failure probability, the
probabilityof failure of each of the individual limit states is typically
estimated using either the FORM or the SORM.

As shown in Fig. 1, the first-order approximation at the MPP
would result in an erroneous approximation of a nonlinear limit-
state function. This, in turn, would result in a poor approximation
of the joint failure region. Therefore, a high-quality approximation
is required to capture the information of the limit states around the
MPP and the joint failure region.

The method of narrow bounds, presented by Ditlevsen® for the
system failure probability, had wider applicability due to its high
accuracy. These bounds considered the correlation between each
of the two failure modes, making the results more physically rea-
sonable. With this method, the system failure probability can be
expressed from the bounds of first- or second-orderjoint probabili-
ties. However, these bounds are quite accurate only when the limit
states are of linear form. In situations where this assumption is not
valid, alternative procedures have to be developed to estimate the
failure probability.

To improve the accuracy of the Ditlevsen’s” bounds, both theo-
retically and practically, Feng’ has developed a method using third-
order joint probability for computing the system failure probability.
This method uses the first-, second-, and third-order joint failure
probabilitiesto estimate the failure probability accurately. For prob-
lems where the second- and third-orderjoint probabilitiescan be es-
timated accurately using shorter computer run times, the resulting
accuracy is high.

The system failure probability obtained using Ditlevsen’s®
method when correlations among the failure modes are less than
60% has narrow bounds; otherwise, it has wide bounds. Similarly,
the bounds obtained by Feng’s’ method are accurate when the joint
failure probabilities can be estimated accurately. However, in most
circumstances the formulas for computing the second- and third-
order joint probabilities have large errors. Therefore, Song® has
proposed a method using numerical integration in a reduced do-
main of failure region. Song proposed to reduce the failure domain

by afactorof safety indexinevery directionand later used numerical
integrationin the reduced domain. This method reduces the number
of actual simulations and gives accurate results for a low number
of failure modes. The computer time of this method increases ex-
ponentially with the number of failure modes. Therefore, when the
structure has many failure modes, this method cannot be directly
used for computing the system failure probability. He has proposed
a method to deal with this drawback; however, that method required
second- and third-order joint failure probabilities. The alternative
method uses the FORM failure probability, which introduces errors.

When dealing with highly nonlinear problems with a large num-
ber of nonnormal random variables and implicit limit-state func-
tions, both the FORM and SORM approximations fail to give ac-
curate results. Therefore, better approximations such as two-point
adaptivenonlinearapproximations [(TANA2)® or (TANA3)!°] have
to be used to approximate the limit-state functions. The approx-
imations capture the information of the limit state accurately in
the vicinity of the MPP. When dealing with multiple limit states,
information about the MPP of each limit state is vital for the ac-
curate estimation of the system failure probability. Therefore, the
two-point approximation is used as a local approximation at each
of the MPPs of every limit state; then the multipoint approxima-
tions (MPA) are constructed. This MPA retains the information of
each of the failure surfaces and constructs a joint failure domain.
Because this joint failure domain is constructed using accurate ap-
proximations of the individual failure domains, it can be integrated
using the Monte Carlo simulation technique to obtain the system
failure probability. The reduction in computational cost of system
reliability predictionsignificantly helps in the preliminary design of
large-scale multifunctional structures.

Proposed Method

The Monte Carlo approach (with a significant number of simula-
tions) is the most reliable method for component/isystem reliability
prediction. To improve the efficiency of Monte Carlo simulations,
the required analysiscan be performedon an approximatelimit-state
function. When the function value and the gradient information at
the MPP are matched for an approximate function, it will be able
to capture the critical failure region around the MPP. This approx-
imation can be used in the analysis algorithm. The wider range
of applicability of MPAs compared to single-pointapproximations
make it more suitable to replace the actual function in the Monte
Carlo simulations.

The MPA can be written using the following general formulation:

K
F(X) =) WiX)F(X) 3)

k=1

where Fy (X) isa two-pointlocal approximationand W; is a weight-
ing functionthatadjuststhe contributionof Fy (X) to F'(X) inEq. (3).
The evaluationof this weighting functioninvolves the selectionof a
blending function and a power index m. The procedural details for
evaluating the weighting function are discussed in the Appendix.

Naturally, the accuracy of a local approximationis one of the pri-
mary factors on which the quality of the MPA is dependent. There-
fore, TANA2 were used as local approximations to construct the
MPA of each limit-state function. TANA?2 can capture the informa-
tion of the limit state accuratelyin the vicinity of the data points. The
MPA retains the information of each of the failure surface without
increasing the computational effort. Because this joint failure do-
main is constructed using more accurate approximations of the in-
dividual failure domains, it can be integrated using the Monte Carlo
simulation technique to obtain the system failure probability.

Most reliability analysis methods begin with the prediction of
the MPP. The MPP of each limit-state function can be efficiently
estimated using the algorithm presented by Wang and Grandhi.!!
This algorithm uses the two-point approximation TANA2 of the
actual limit state in the search procedure to reduce the computa-
tional time. This method is very efficient when dealing with highly
nonlinear implicit problems with a large number of random vari-
ables. In the process of searching for the MPP of each limit-state
function, a series of data point information, including the function
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values and gradients, is obtained. In this research, data points that
are obtained in the process of searching for the MPP, as well as the
points obtained while estimating the intersection point of the limit
states closest to the origin in the normalized domain, are used to
construct the local approximations. Once the local approximations
are obtained, an MPA is constructedthat contains the informationof
all of the local approximations. The MPA adaptively adjusts itself
to behave as a local approximation when a design point is close to
one of the data points. Function and gradient values of this MPA
corresponddirectly with their exact counterpartsat the points where
the local approximations were generated. Monte Carlo simulation
is performed on this MPA to obtain the system failure probability.

System Reliability Calculation

1) Estimate the MPP of each limit-state function. The MPP is
obtained by using the algorithm presented by Wang and Grandhi.'!
2) In the process of searching for the MPP of each limit state, the
information (function value and gradient) of a number of points on
each limit-state function is obtained. With this information, local
TANA?2 approximations at these design points can be constructed.

3) After obtaining the MPP for each of the limit states, the closest
intersection point of all of the limit states in the normalized domain
is estimated. During this process, design points are obtained, and
these points, along with the intersection point, are used to construct
additional local TANA?2 approximations.

4) Once thelocal approximationsare constructed, weighting func-
tions that are required to construct the MPA are evaluated. One
weighting function is required for each of the local approximations.
The weighting function controls the influence of each local approx-
imation at a particular point in the design space. With the same
process, an MPA can be constructed for each limit-state function.
Figure 2 shows how the MPA adaptsto thelocal approximationat the
design points where the local approximation is constructed. When
the design point s close to the expansionpoint of one of the approx-
imations, the weight of that approximationis the maximum, and the
MPA takes the shape of that particular local approximation. If the
design point is close to the expansion points of two local approxi-
mations, the contribution from both of the local approximations is
taken care of using the weighting functions.
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Fig.2 MPA Representation using TANA2 as local approximations.
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Fig. 3 System reliability calculation.

5) After surrogaterepresentationsfor each limit-state functionare
obtained, Monte Carlo simulation is performed on the approximate
limit-state functions, which closely represent the actual limit states
at the MPP and the data points.

The use of MPA enables the modeling of the n-dimensional joint
failure domain for using the Monte Carlo simulation. This approx-
imation reduces a considerable amount of computational effort be-
cause the MPA of each limit-state functionis explicit, without sacri-
ficing much accuracy. Because information at more points than the
one- and two-point approximationsis used to construct the MPA of
each limit-state function, the MPA is accurate over a larger region.
Figure 3 illustrates the methodology just discussed.

Numerical Examples

Three examples are provided to show the applicability of the
proposed method. This method can be applied for problems with
multiple nonnormal random variables and implicit or explicit limit
states. Various examples have been studied to demonstrate the ef-
ficiency and accuracy of this method. This method can produce an
accurate value of the probability of failure, unlike the other methods
that only produce the bounds on its value. The final failure proba-
bility of the system estimated by using an MPA is compared with
the results obtained directly from a Monte Carlo simulation. Each
limit state is approximated using the MPA, and the Monte Carlo
simulation is performed on the approximate limit-state functions.

Cantilever Beam

A cantilever beam, shown in Fig. 4, is subjected to a tip load
P =36.3 kgf. Three failure modes, the displacement greater than
0.00381 m (failure), stress greater than 703 kg/cm?® (failure), and
the fundamental frequency less than 10 Hz (failure), are considered:
Displacement is found by

G,(X) = 4PL*/Ebh* — 0.00381 < 0.0
stress by
G,(X) = 12PL/bh* — 10* < 0.0
and frequency by
G5(X) =10 — (1.875)2(E1/pAL4)% <0.0

where L, b, and h are the length, width, and height of the beam
with mean values 0f 0.762,0.0217,and 0.0637 m, respectively,and
the Young’s modulus E is 703,000 kg/cm®. The length, width,
and height of the beam are considered as the random variables,
and the standard deviations are o; =0.0762, o, =0.00203, and
o, =0.00635 m, respectively. Both L and % are considered as nor-
mally distributed and b is considered as a lognormal distribution.
In this example, each of the limit states is approximated using
MPAs. To improve the accuracy of the approximations, two ad-
ditional points are added to each of the MPAs. These two points
are the MPP of the other two limit states when one MPA is being
constructed. For example, when an MPA is constructedfor displace-
ment, the MPP of stress and frequency limit states are added to the
approximation. This procedure improves the accuracy of the MPA
at each of the three MPPs. The local approximations constructed at
the intermediate points (points obtained during the MPP search and
the points obtained during the search for the closest common inter-
section point) are TANA?2 for displacement and stress constraints.
A first-order approximation is constructed at each of the other two
MPPs; then, these local approximations are added to the MPA.

Fig.4 Cantilever beam.
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Table 1 MPA and Monte Carlo results for cantilever beam

Method

System failure probability — Difference, %

Monte Carlo simulation 0.0264 —_—
MPA (m =2.0) 0.0276 4.54
First-order series bounds 0.0269-0.0429 1.89-62.5

The frequency constraint is not dependent on the width of the
beam; therefore, there is no change in the value of the width from
the mean, and the gradient is zero. For that reason, a first-order
approximation is considered instead of TANA2. These first-order
approximations are considered at each of the intermediate design
points and the MPPs of the displacement and stress constraints.

Table 1 clearly shows the accuracy of the proposed MPA-based
system reliability method compared to the first-order series bounds.
The MPA resultsare quite comparableto the Monte Carlo simulation
results, the difference being 4.54%. There are 100,000 Monte Carlo
simulations performed on the exact limit-state functions and on the
MPAs. The FORM bounds were wide; however, the lower bound
was a very good approximation. The reason why the FORM bound
failed to include the actual failure probability is that the individual
failure probability estimated using the FORM technique was not
accurate.

Ten-Bar Truss Structure

The system failure probability of a 10-bar truss, shown in Fig. 5,
was calculated in this example. The cross-sectional areas of all
of the 10 truss members are lognormal distributions with a mean
value of 0.0635 m and a standard deviation of 0.00635 m. The
Young’s modulus is 703,000 kg/cm? and the forces applied are
P, = P, =45,400-kgforce,as shownin Fig. 5. Two limit states have
been considered to estimate the system failure probability. One is a
displacement limit, and the other is an eigenvalue limit. The max-
imum displacement of the tip of the truss structure should be less
than 0.0457 m, and the eigenvalue must be greater than 177 (rad/s)*:

G\(X) = D;,/0.0457 — 1.0 > 0.0
G,(X) = 1.0 — 1,/177.0 > 0.0

The structural analysisis done using ASTROS, an FEA program.
Table 2 compares the results obtained by different methods and the
Monte Carlo method. Because this is a problem with implicit limit-
state functions, TANAZ2s are constructed at the data points obtained
in the process of searching for the MPP and the intersection point
search. Seven data points were used for the displacementconstraint,
four from the MPP search and three from the intersection point
search. For the frequency constraint,eightdata points were used, five
from the MPP search and three from the intersection point search.
These local approximations are blended together using the MPA
method. There are two MPAs: One correspondsto the displacement
limit state, and the other correspondsto the fundamental frequency.
In this example, 100,000 simulations using ASTROS were used
to estimate the system failure probability using the Monte Carlo
method.

With the MPA method, the system failure probability obtained
was 0.0058, which is a 7.5% difference from the actual value. The
results obtained from the Monte Carlo simulation are the converged
results after 100,000 finite element simulations. Each simulation
involves evaluation of the displacement and frequency limit-state
function values. Therefore, 100,000 simulations involved 200,000
calls to the finite element method package, which in this case was
ASTROS. As seen in Table 2, the first-order series bounds are not
precise because neither of the limit states are linear functions. Even
though additional bounding techniques are available, they require
additional computational effort to obtain the bounds. The compari-
son in this example is carried out between methods that require no
additional simulations after the safety index is obtained for all of
the limit states. The MPA was accurate, and it was able to integrate
the individual failure domains to model the joint failure domain. A
good local approximationof the individuallimit states ensures good
system failure probability estimation.

Table2 MPA and Monte Carlo results for 10-bar truss
Method

System failure probability — Difference, %

Monte Carlo simulation 0.0054 —_—
MPA (m =2.0) 0.0058 7.5
First-order series bounds 0.0039-0.0062 —28.3-13.9
< 9.14m > 9.14m >
J
9.14m
N
N
v
45,400 Kgf 45,400 Kgf

Fig.5 Truss with 10 bars.

Fig. 6 Turbine blade.

Turbine Blade

The turbine blade geometry is shown in Fig. 6, with a 45-deg
twistangle. The bladeis modeled with 80 quadrilateralplatebending
elements with 99 nodes. All of the degrees of freedom along the hub
are fixed. The thicknessesof the plate elements are consideredas the
random variables, but, with physical linking, only 10 independent
random variables are considered. All of the chordwise elements are
assumed to have the same thickness. All of the element thicknesses
have a mean value of 0.00889 m, with coefficient of variation of
0.10.

Three different limit states are considered; for safety, the blade
model must satisfy 1) displacementin the Z direction,

Dy;,/0.015—-1.0 < 0.0
2) first natural frequency,
1.0 — 1,/2500 < 0.0

and 3) stress in element 77 (root),

o, : n o, : 0,0y Try :
65,000 65,000 65,000 x 65,000 9000

-1.0=<0.0

ol

The MPP is estimated for all of the limit states; then, when the
intermediate points are used in the MPP search algorithm, local ap-
proximationsare constructed.Once the MPP is obtained, the closest
intersection point is obtained by posing it as an optimization prob-
lem as follows: Minimize (UT U)!/?, subject to

&) =0, &WU) =0

where U is the vectorof random variablesin the transformeddomain
and g;(U) and g,(U) are the two limit-state functions used to de-
termine the intersection point. This optimization problem is solved
three times by using two different limit states in each analysis to
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Table 3 MPA and Monte Carlo results for turbine blade
Method

System failure probability — Difference, %

Monte Carlo simulation 0.0121 —_—
MPA (m =2.0) 0.0132 8.59
First-order series bounds 0.0059-0.0125 —51.45-3.55

obtain all of the three intersection points for the three limit states.
DOT!? was used in this research work to perform optimization.

For stress constraint, six actual simulations were required to con-
verge to the MPP; therefore, seven design points were available
to construct the local approximations. The displacement constraint
convergedin seveniterations,resultingin eightdesign points; there-
fore, seven TANA?2 are used to construct the MPA for the displace-
ment limit state. When the closest intersection point was obtained,
two additionalintermediate points were obtained. This information
was added to the available information, along with the informa-
tion about the intersection point. For the frequency constraint, four
TANA?2 were constructed at various design points, and these ap-
proximations were blended into a third MPA. The points obtained
in the intersection point search were common for all of the three
limit states.

Once these limit states were available as closed-form MPAs,
Monte Carlo simulation was used to obtain the system failure prob-
ability. The results are presented in Table 3. The results obtained
from the MPA are compared with the actual Monte Carlo results
and FORM results. The first-order bound method could approxi-
mate the upper bound of the system failure probability very accu-
rately, to within 4% error. However, the estimated lower bound was
highly inaccurate, and this would make the decision making based
on the estimatedbound a daunting task. The proposedmethod would
efficiently obtain the system failure probability for structural sys-
tems that have highly nonlinear limit states with high accuracy. The
results show that the system failure probability obtained by the pro-
posed method had an error of 8.59% on the conservative side. A
certain percentage of difference is inevitable in between the Monte
Carlo estimation and MPA due to the way these methods represent
the actual response.

Summary

The computation of system reliability for multiple implicit limit
states is a complex and time-consuming task. The use of MPA en-
ables modeling of the n-dimensional joint failure domain for build-
ing surrogate models that can be used in a Monte Carlo simulation.
Because the MPA of each limit-state function is explicit, this ap-
proximation considerably reduces the computational effort without
sacrificing much accuracy. Because information at more points is
used to construct the MPA of each limit-state function, the MPA is
accurate over a larger region compared to the one- and two-point
approximations. It is possible to provide a good prediction of the
intersection points of different limit-state functions.

By the use of the availablemethods in the literature, the boundson
the system failure probabilitycan be obtained. These bounds are esti-
mated by using approximationtechniques,unlike the n-dimensional
integration, which is more accurate. This can lead into an additional
uncertainty in the bounds. In MPA, the failure probability of the
system is available as a single value, and it takes into account the
correlation between the limit states. After solving a class of prob-
lems with MPA, it is possible to understand where the result stands
in comparison to the Monte Carlo simulation.

MPA has a tremendous potential for problems where the limit
states are not unimodal and exhibit high nonlinearity.In those cases,
the MPP search starts from a mean point and approaches from one
side of the nonlinear surface. The points generated in the search
may represent a very small region of the nonlinear domain. If an
approximation is built only using the searched failure points, then
the systemreliability may notinclude the complete failureregion.In
cases where TANA2 convergesrapidly to the MPP, the entire domain
may not have been investigated. In those situations, a design of
experimentsapproach for choosingthe additional points for building
several local approximations is appropriate. The idea is to capture
the failure region accurately using multiple approximations.

Appendix: MPA Based on Local Approximations

The MPA' can be regarded as the connection of many local
approximations. With function and sensitivity information already
available at a series of points, one local approximation is built at
each point. All local approximations are then integrated into an
MPA by the use of a weighting function. The weighting functions
are selected such that the approximation reproduces function and
gradient information at the known data points.

The local approximationsdiscussed in this section are TANA2s.”
The function F (X) and gradient 9 F'(X)/0dx informationis available

at
X" k=1,2,....K

The MPA can be written in terms of the local approximationsas

X = (X140, X245 -

K
FOO =) W@ FE® (A1)
k=1
where W, is a weighting function
¢ (X)
We(X) = ——22— (A2)
S S S

and F, (X) is the TANA2. W, (X) adjusts the contribution of F (X)
to F(X) in Eq. (Al). Here, ¢, (X) is called a blending function and
has its maximum of 1 at X and vanishes when X is very far from X.
The important details of the TANA2® are presented hereafter.
Further details can be found in Ref. 6. The physical variables are
transformed to the intervening variables using the relation

_ L Pi .
Vi =Xx;', i=1,2,...,n

where the exponents p; represent the nonlinear indices and are dif-
ferent for each variable, y; is the intervening variable, and x; is the
physical variable. Information at two points, namely, the compar-
ison point X;and the expansion point X5, is used in building the
approximation. The approximation is obtained by expanding the
function at the expansion point X, as

_ S ag(X) Xs "
FX) =g(X)+ ) —ga(xf) == =)

i=1

n
+%EZ (a7 = x21)° (A3)
i=1

This equation is a second-order Taylor series expansion in terms
of the intervening variables, in which the Hessian matrix has only
diagonal elements of the same value ¢. Therefore, this approxima-
tion does not need the calculation of second-order derivatives. The
error from the approximate Hessian matrix is partially corrected by
adjusting the nonlinearity index p;. In contrast to the true quadratic
approximation, this approximation is closer to the actual function
for highly nonlinear problems due to its adaptability.

Equation (A3) has n + 1 unknown constants, so that n + 1 equa-
tions are required. When Eq. (A3), is differentiatedn equations are
obtained by matching the derivatives available at the previous point
X

ag(X i "l og(x ) -
XD _ (_> B | (w1,

Bx[ Xz_z Bx[ i 0,2 i1
i=1,2,....,n (A4

Anotherequationis obtainedby matching the exactand approximate
function values with the previous point X, :

Di

n 1=y
dgX) ",
X)) = g(Xo) + ) == = — (sl =)

i=1
1y pi ri)?
+5e ) (i —xlh) (AS5)
i=1
In this method, the exact function and derivative values are equal to
the approximate function and derivative values, respectively, at the
previous and current points.
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Several blending functionsin Eq. (A2) can used to make the MPA
reproduce the exact function and gradient values at the data points
where the local approximation was built. There are at least three
blending functions that could meet this requirement. They are

$eX) = 1/[exp(hy) — 1] (A6)
$(X) = 1/log(hy + 1) (A7)
B X) = 1/h (A8)
where
he=| Y 00— x0)? (A9)

i=1

and where m is a positive integer. Additionally, it is recommended,
from computationalconsiderations,that the design space be normal-
ized as x; € [0, 1] to measure the weighting function. Equation (A8)
was used in this work.

With each of Eqgs. (A6-A9), the weighting function of Eq. (A2)
has the properties

WiX) =85,  0=WiX)<1  (AlO)
1
K
dowax =1 (A12)

k=1

The weighting function varies between 0 and 1, and the summa-
tion of all weighting functionsis 1. The following propertiescan be
shown for each blending function given in Eqs. (A6—A8):

oW (X,
W X)) -0 (A13)
0X;
When Eq. (1) is differentiated,
IFEX) K[ aw(X) - IF, (X)
= —FX W, (X)—
" > e L0 + W0 —

k=1

i=1,2,...,n (Al4)

From Eqgs. (Al), (A10), (A13), and (A14), the following are
obtained:
F(Xj)=ﬁj(Xj)=F(Xj), j=12,..., K (Al5)

IF(X;) 0F;(X) 9F(X))
ax,  o0x,  ox

i=1,2,...,n, i=1,2,....,K (Al6)

Equations (A15) and (A16) show that the MPA has the same zero-
order and first-order information as the original function at the data
points:

K
lim FX) = L Z F.(X) (A17)
xj — £00 K
k=1
The MPA is an average value of all TANA2 estimations when a
design point is far from every data point.

Reliability analysis involves iterations, which require implicit
functionevaluationsand gradientevaluationsthat are expensiveand
come from finite element simulation. Therefore, the use of approx-
imations helps reduce the cost involved in each analysis, without
sacrificing the accuracy of the results. Multipoint function approx-
imations are more suitable for system reliability analysis where the
failure domain is the result of multiple failure criteria because each
of the failure surfaces has to be approximated separately and then
combinedto representthe failuredomain. The two-pointapproxima-
tion (TANAZ2) discussed earlier is used as the local approximation.
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