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Structural System Reliability Quanti� cation
Using Multipoint Function Approximations
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In structural problems, when dealing with uncertainties, the failure probability of the structure is estimated
subject to a particular performance criterion. However, when the failure of a structural system is governed by
multiple failure criteria, all of the measures have to be considered in the failureprobabilityestimation.These failure
criteria are usually correlated, and the accuracy of the estimated structural failure probability highly depends on
the ability to model the joint failure surface. For example, in an aircraft structure, the stresses in each of the
members of a wing can be posed as limit-state functions, along with the displacements and the natural frequencies
of the wing. There are no criteria to disregard one limit state over the other, or to convert the system reliability
problem into component reliability (dealing with displacement, stress, and frequency individually). Each failure
criterion is modeled as a limit-state function for the reliability analysis, which is an implicit function of the random
variables. The evaluationof this limit state often requires an expensive � nite element simulationor a computational
� uid dynamics simulation. Therefore, to predict the failure probability of a structural system ef� ciently, function
approximations for the limit states are considered. An accurate way of de� ning highly nonlinear functions is
presented using a new class of approximations. These approximations are used in conjunction with the Monte
Carlo simulation to estimate the structural failure probability. Numerical examples are presented to show the
applicability of the proposed method.

Introduction

A STRUCTURE typically consists of many components, each
of which has the potential to fail, and the individual compo-

nent failure might lead to structural failure. Even in simple struc-
tures composed of just one element, various failure modes such as
bending action, buckling, axial stress, temperature, frequency, etc.,
may exist and be relevant to the solution. The compositionof many
elements in structures is referred to as a “structural system,” and a
system may be subject to many forms of loads, either single or in
various combinations. Therefore, the reliability analysis of struc-
tural systems will involve consideration of multiple and perhaps
correlated limit states that can be de� ned in any discipline. Each
limit state is an implicit function and requires expensive computer
time to evaluate the functionvalue and the gradients requiredfor the
reliability analysis. Therefore, the presence of multiple limit states
increasesthe computationaleffort involvedin the failure probability
estimation process.

The system failure probabilityis an integrationof the joint proba-
bility density function (PDF) over the joint failure domain obtained
by the intersection of all of the limit states. The joint PDF is an
implicit function and can be evaluated numerically using Monte
Carlo simulation. However, this would require a large number of
exact functionevaluations,which would come from expensive� nite
element analysis (FEA) or computational � uid dynamics (CFD)
simulations.The cost involved in the simulations renders the Monte
Carlo simulation unsuitable for most of the practical structural re-
liability problems. Therefore, alternative methods are required to
estimate the structural failure probability.

The most commonlyusedclassi� cationsfor the structuralsystems
are 1) series systemsand 2) parallel systems.1 The series systemsare
thosein which, even if onecomponentfails to performsatisfactorily,
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the whole system will fail. This is also called a weakest-linkmodel.
Because every component is required to function satisfactorily for
the system to be reliable, the failure probabilityof every component
is estimated using various approximation techniques. In this paper,
the � rst-order reliability method (FORM)2 is used to estimate the
component failure probability to compare the results with the pro-
posedmethod. It is evident that a staticallydeterminatestructureis a
series system because the failure of any one of its members implies
the failure of the structure.

In the case of a parallel system, the system survives even if one
componenthas failed.Thesystemfails to functionsatisfactorilyonly
when every component of the system has failed to function satis-
factorily. Parallel systems are sometimes referred to as redundant
systems. There are two types of redundancies: active redundancy
and passive redundancy.Active redundancyoccurs when redundant
elements activelyparticipate in structuralbehavior, even during low
loading. Passive redundancy occurs when the redundant elements
do not come into play until the structure has suffered a suf� cient
degree of degradation or failure of its elements. A system that is
a combination of both series and parallel components is called a
mixed system.

In structural system reliability analysis, the bound methods and
numerical integration methods have practical signi� cance. If the
components of the system are assumed independent, then the sys-
tem failure can be obtained easily. However, in practical problems,
the failure conditions depend on the same random variables; there-
fore, the componentsare correlated.Cornell3 has developedbounds
on the system failure probability for systems subjected to multiple
failure modes. The upper bound on the system failure was obtained
by assuming perfectly correlated components, and this is obtained
as follows, with the upper bound on P f equaling

nX

i

[componentP f ] (1)

The lower bound is obtained by assuming statistically independent
components,with the lower bound on P f equaling

max[componentP f ] (2)

where n is the number of failure modes. If all of the components
are perfectly independent, then the failure probability bounds can
be obtained by the preceding lower and upper bound formulations.
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Fig. 1 Joint failure region.

However, the component P f has to be quanti� ed accurately to ob-
tain an accuratesystem reliabilitybound.To achievebetter accuracy
compared to � rst- and second-ordermethods, the componentfailure
probabilitycan be determinedby using the high-qualityapproxima-
tion techniques developed by Penmetsa et al. in earlier work.4

In FORM, the limit state is approximated with a linear function
at the most probable failure point (MPP). The MPP is the point on
the limit state that is nearest to the origin in a standardnormal space
that is obtained by performing Rosenblatt transformation5 to the
random variables. Because of rotational symmetry and exponential
decay of the probability density in the standard normal space, the
MPP has the highest likelihood of failure among all points in the
failure domain. Therefore, the neighborhood of the MPP makes a
major contribution to the failure probability integral. This property
is the basis for FORM, which constructs an approximation to the
failure probability integral by using the tangent plane at the MPP
as the integration boundary. The second-order reliability method
(SORM) improves on this approximation with a quadratic surface
using the second-order gradients. In system failure probability, the
probabilityof failureof each of the individuallimit states is typically
estimated using either the FORM or the SORM.

As shown in Fig. 1, the � rst-order approximation at the MPP
would result in an erroneous approximation of a nonlinear limit-
state function. This, in turn, would result in a poor approximation
of the joint failure region. Therefore, a high-quality approximation
is required to capture the information of the limit states around the
MPP and the joint failure region.

The method of narrow bounds, presented by Ditlevsen6 for the
system failure probability, had wider applicability due to its high
accuracy. These bounds considered the correlation between each
of the two failure modes, making the results more physically rea-
sonable. With this method, the system failure probability can be
expressed from the bounds of � rst- or second-order joint probabili-
ties. However, these bounds are quite accurate only when the limit
states are of linear form. In situations where this assumption is not
valid, alternative procedures have to be developed to estimate the
failure probability.

To improve the accuracy of the Ditlevsen’s6 bounds, both theo-
retically and practically,Feng7 has developeda method using third-
order joint probability for computing the system failure probability.
This method uses the � rst-, second-, and third-order joint failure
probabilitiesto estimate the failure probabilityaccurately.For prob-
lems where the second-and third-orderjoint probabilitiescan be es-
timated accurately using shorter computer run times, the resulting
accuracy is high.

The system failure probability obtained using Ditlevsen’s6

method when correlations among the failure modes are less than
60% has narrow bounds; otherwise, it has wide bounds. Similarly,
the bounds obtained by Feng’s7 method are accurate when the joint
failure probabilities can be estimated accurately. However, in most
circumstances the formulas for computing the second- and third-
order joint probabilities have large errors. Therefore, Song8 has
proposed a method using numerical integration in a reduced do-
main of failure region. Song proposed to reduce the failure domain

bya factorof safety indexin everydirectionand later used numerical
integrationin the reduced domain. This method reduces the number
of actual simulations and gives accurate results for a low number
of failure modes. The computer time of this method increases ex-
ponentially with the number of failure modes. Therefore, when the
structure has many failure modes, this method cannot be directly
used for computing the system failure probability.He has proposed
a method to deal with this drawback; however, that method required
second- and third-order joint failure probabilities. The alternative
methoduses the FORM failure probability,which introduceserrors.

When dealing with highly nonlinear problems with a large num-
ber of nonnormal random variables and implicit limit-state func-
tions, both the FORM and SORM approximations fail to give ac-
curate results. Therefore, better approximations such as two-point
adaptivenonlinearapproximations[(TANA2)9 or (TANA3)10] have
to be used to approximate the limit-state functions. The approx-
imations capture the information of the limit state accurately in
the vicinity of the MPP. When dealing with multiple limit states,
information about the MPP of each limit state is vital for the ac-
curate estimation of the system failure probability. Therefore, the
two-point approximation is used as a local approximation at each
of the MPPs of every limit state; then the multipoint approxima-
tions (MPA) are constructed. This MPA retains the information of
each of the failure surfaces and constructs a joint failure domain.
Because this joint failure domain is constructed using accurate ap-
proximationsof the individual failure domains, it can be integrated
using the Monte Carlo simulation technique to obtain the system
failure probability. The reduction in computational cost of system
reliabilitypredictionsigni� cantly helps in the preliminarydesign of
large-scale multifunctionalstructures.

Proposed Method
The Monte Carlo approach (with a signi� cant number of simula-

tions) is the most reliable method for component/system reliability
prediction. To improve the ef� ciency of Monte Carlo simulations,
the requiredanalysiscan be performedonanapproximatelimit-state
function. When the function value and the gradient information at
the MPP are matched for an approximate function, it will be able
to capture the critical failure region around the MPP. This approx-
imation can be used in the analysis algorithm. The wider range
of applicability of MPAs compared to single-point approximations
make it more suitable to replace the actual function in the Monte
Carlo simulations.

The MPA can be written using the followinggeneral formulation:

QF.X / D
KX

k D 1

Wk.X/ QFk.X/ (3)

where QFk .X/ is a two-point local approximationand Wk is a weight-
ing functionthat adjuststhe contributionof QFk.X/ to QF .X/ in Eq. (3).
The evaluationof this weighting function involves the selectionof a
blending function and a power index m. The procedural details for
evaluating the weighting function are discussed in the Appendix.

Naturally, the accuracy of a local approximation is one of the pri-
mary factors on which the quality of the MPA is dependent.There-
fore, TANA2 were used as local approximations to construct the
MPA of each limit-state function. TANA2 can capture the informa-
tion of the limit state accuratelyin the vicinityof the data points.The
MPA retains the information of each of the failure surface without
increasing the computational effort. Because this joint failure do-
main is constructed using more accurate approximations of the in-
dividual failure domains, it can be integratedusing the Monte Carlo
simulation technique to obtain the system failure probability.

Most reliability analysis methods begin with the prediction of
the MPP. The MPP of each limit-state function can be ef� ciently
estimated using the algorithm presented by Wang and Grandhi.11

This algorithm uses the two-point approximation TANA2 of the
actual limit state in the search procedure to reduce the computa-
tional time. This method is very ef� cient when dealing with highly
nonlinear implicit problems with a large number of random vari-
ables. In the process of searching for the MPP of each limit-state
function, a series of data point information, including the function
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values and gradients, is obtained. In this research, data points that
are obtained in the process of searching for the MPP, as well as the
points obtained while estimating the intersection point of the limit
states closest to the origin in the normalized domain, are used to
construct the local approximations.Once the local approximations
are obtained,an MPA is constructedthat contains the informationof
all of the local approximations. The MPA adaptively adjusts itself
to behave as a local approximation when a design point is close to
one of the data points. Function and gradient values of this MPA
corresponddirectlywith their exact counterpartsat the pointswhere
the local approximations were generated. Monte Carlo simulation
is performed on this MPA to obtain the system failure probability.

System Reliability Calculation
1) Estimate the MPP of each limit-state function. The MPP is

obtained by using the algorithm presented by Wang and Grandhi.11

2) In the process of searching for the MPP of each limit state, the
information (function value and gradient) of a number of points on
each limit-state function is obtained. With this information, local
TANA2 approximationsat these design points can be constructed.

3) After obtaining the MPP for each of the limit states, the closest
intersectionpoint of all of the limit states in the normalized domain
is estimated. During this process, design points are obtained, and
these points, along with the intersectionpoint, are used to construct
additional local TANA2 approximations.

4)Once the localapproximationsare constructed,weightingfunc-
tions that are required to construct the MPA are evaluated. One
weighting function is required for each of the local approximations.
The weighting function controls the in� uence of each local approx-
imation at a particular point in the design space. With the same
process, an MPA can be constructed for each limit-state function.
Figure2 showshow theMPA adaptsto the localapproximationat the
design points where the local approximation is constructed. When
the design point is close to the expansionpoint of one of the approx-
imations, the weight of that approximation is the maximum, and the
MPA takes the shape of that particular local approximation. If the
design point is close to the expansion points of two local approxi-
mations, the contribution from both of the local approximations is
taken care of using the weighting functions.

Fig. 2 MPA Representation using TANA2 as local approximations.

Fig. 3 System reliability calculation.

5) After surrogaterepresentationsfor each limit-statefunctionare
obtained, Monte Carlo simulation is performed on the approximate
limit-state functions, which closely represent the actual limit states
at the MPP and the data points.

The use of MPA enables the modeling of the n-dimensional joint
failure domain for using the Monte Carlo simulation. This approx-
imation reduces a considerable amount of computational effort be-
cause the MPA of each limit-statefunction is explicit,without sacri-
� cing much accuracy. Because information at more points than the
one- and two-point approximationsis used to construct the MPA of
each limit-state function, the MPA is accurate over a larger region.
Figure 3 illustrates the methodology just discussed.

Numerical Examples
Three examples are provided to show the applicability of the

proposed method. This method can be applied for problems with
multiple nonnormal random variables and implicit or explicit limit
states. Various examples have been studied to demonstrate the ef-
� ciency and accuracy of this method. This method can produce an
accuratevalue of the probabilityof failure, unlike the other methods
that only produce the bounds on its value. The � nal failure proba-
bility of the system estimated by using an MPA is compared with
the results obtained directly from a Monte Carlo simulation. Each
limit state is approximated using the MPA, and the Monte Carlo
simulation is performed on the approximate limit-state functions.

Cantilever Beam
A cantilever beam, shown in Fig. 4, is subjected to a tip load

P D 36:3 kgf. Three failure modes, the displacement greater than
0.00381 m (failure), stress greater than 703 kg/cm2 (failure), and
the fundamental frequencyless than 10 Hz (failure),are considered:
Displacement is found by

G1.X / D 4PL3=Ebh3 ¡ 0:00381 · 0:0

stress by

G2.X / D 12PL=bh2 ¡ 104 · 0:0

and frequency by

G3.X / D 10 ¡ .1:875/2.E I=½ AL4/
1
2 · 0:0

where L , b, and h are the length, width, and height of the beam
with mean values of 0.762, 0.0217, and 0.0637 m, respectively,and
the Young’s modulus E is 703,000 kg/cm2. The length, width,
and height of the beam are considered as the random variables,
and the standard deviations are ¾L D 0:0762, ¾b D 0:00203, and
¾h D 0:00635 m, respectively.Both L and h are considered as nor-
mally distributed and b is considered as a lognormal distribution.

In this example, each of the limit states is approximated using
MPAs. To improve the accuracy of the approximations, two ad-
ditional points are added to each of the MPAs. These two points
are the MPP of the other two limit states when one MPA is being
constructed.For example,when an MPA is constructedfor displace-
ment, the MPP of stress and frequency limit states are added to the
approximation. This procedure improves the accuracy of the MPA
at each of the three MPPs. The local approximationsconstructedat
the intermediate points (points obtained during the MPP search and
the points obtained during the search for the closest common inter-
section point) are TANA2 for displacement and stress constraints.
A � rst-order approximation is constructed at each of the other two
MPPs; then, these local approximationsare added to the MPA.

Fig. 4 Cantilever beam.
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Table 1 MPA and Monte Carlo results for cantilever beam

Method System failure probability Difference, %

Monte Carlo simulation 0.0264 ——
MPA (m D 2:0) 0.0276 4.54
First-order series bounds 0.0269–0.0429 1.89–62.5

The frequency constraint is not dependent on the width of the
beam; therefore, there is no change in the value of the width from
the mean, and the gradient is zero. For that reason, a � rst-order
approximation is considered instead of TANA2. These � rst-order
approximations are considered at each of the intermediate design
points and the MPPs of the displacement and stress constraints.

Table 1 clearly shows the accuracy of the proposed MPA-based
system reliabilitymethod compared to the � rst-order series bounds.
The MPA resultsarequitecomparableto theMonteCarlo simulation
results, the differencebeing 4.54%. There are 100,000Monte Carlo
simulations performed on the exact limit-state functions and on the
MPAs. The FORM bounds were wide; however, the lower bound
was a very good approximation.The reason why the FORM bound
failed to include the actual failure probability is that the individual
failure probability estimated using the FORM technique was not
accurate.

Ten-Bar Truss Structure
The system failure probabilityof a 10-bar truss, shown in Fig. 5,

was calculated in this example. The cross-sectional areas of all
of the 10 truss members are lognormal distributions with a mean
value of 0.0635 m and a standard deviation of 0.00635 m. The
Young’s modulus is 703,000 kg/cm2 and the forces applied are
P1 D P2 D 45;400-kgforce, as shown in Fig. 5. Two limit stateshave
been considered to estimate the system failure probability.One is a
displacement limit, and the other is an eigenvalue limit. The max-
imum displacement of the tip of the truss structure should be less
than 0.0457m, and the eigenvaluemust be greater than 177 (rad/s)2:

G1.X / D Dtip=0:0457 ¡ 1:0 ¸ 0:0

G2.X / D 1:0 ¡ ¸1=177:0 ¸ 0:0

The structuralanalysis is done using ASTROS, an FEA program.
Table 2 compares the results obtained by different methods and the
Monte Carlo method. Because this is a problem with implicit limit-
state functions,TANA2s are constructedat the data points obtained
in the process of searching for the MPP and the intersection point
search.Seven data points were used for the displacementconstraint,
four from the MPP search and three from the intersection point
search.For the frequencyconstraint,eightdatapointswereused,� ve
from the MPP search and three from the intersection point search.
These local approximations are blended together using the MPA
method. There are two MPAs: One correspondsto the displacement
limit state, and the other corresponds to the fundamental frequency.
In this example, 100,000 simulations using ASTROS were used
to estimate the system failure probability using the Monte Carlo
method.

With the MPA method, the system failure probability obtained
was 0.0058, which is a 7.5% difference from the actual value. The
results obtained from the Monte Carlo simulationare the converged
results after 100,000 � nite element simulations. Each simulation
involves evaluation of the displacement and frequency limit-state
function values. Therefore, 100,000 simulations involved 200,000
calls to the � nite element method package, which in this case was
ASTROS. As seen in Table 2, the � rst-order series bounds are not
precise because neither of the limit states are linear functions.Even
though additional bounding techniques are available, they require
additional computational effort to obtain the bounds. The compari-
son in this example is carried out between methods that require no
additional simulations after the safety index is obtained for all of
the limit states. The MPA was accurate, and it was able to integrate
the individual failure domains to model the joint failure domain. A
good local approximationof the individuallimit states ensures good
system failure probability estimation.

Table 2 MPA and Monte Carlo results for 10-bar truss

Method System failure probability Difference, %

Monte Carlo simulation 0.0054 ——
MPA (m D 2:0) 0.0058 7.5
First-order series bounds 0.0039–0.0062 ¡28.3–13.9

Fig. 5 Truss with 10 bars.

Fig. 6 Turbine blade.

Turbine Blade
The turbine blade geometry is shown in Fig. 6, with a 45-deg

twist angle.The bladeis modeledwith 80 quadrilateralplatebending
elements with 99 nodes. All of the degreesof freedom along the hub
are � xed.The thicknessesof the plate elementsare consideredas the
random variables, but, with physical linking, only 10 independent
random variables are considered.All of the chordwise elements are
assumed to have the same thickness.All of the element thicknesses
have a mean value of 0.00889 m, with coef� cient of variation of
0.10.

Three different limit states are considered; for safety, the blade
model must satisfy 1) displacement in the Z direction,

Dtip=0:015 ¡ 1:0 · 0:0

2) � rst natural frequency,

1:0 ¡ ¸1=2500 · 0:0

and 3) stress in element 77 (root),
"³
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The MPP is estimated for all of the limit states; then, when the
intermediate points are used in the MPP search algorithm, local ap-
proximationsare constructed.Once the MPP is obtained,the closest
intersection point is obtained by posing it as an optimization prob-
lem as follows: Minimize .UT U/1=2 , subject to

g1.U/ D 0; g2.U/ D 0

where U is thevectorof randomvariablesin the transformeddomain
and g1.U/ and g2.U/ are the two limit-state functions used to de-
termine the intersection point. This optimization problem is solved
three times by using two different limit states in each analysis to
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Table 3 MPA and Monte Carlo results for turbine blade

Method System failure probability Difference, %

Monte Carlo simulation 0.0121 ——
MPA (m D 2:0) 0.0132 8.59
First-order series bounds 0.0059–0.0125 ¡51.45–3.55

obtain all of the three intersection points for the three limit states.
DOT12 was used in this research work to perform optimization.

For stress constraint, six actual simulations were required to con-
verge to the MPP; therefore, seven design points were available
to construct the local approximations.The displacement constraint
convergedin seven iterations,resultingin eight design points; there-
fore, seven TANA2 are used to construct the MPA for the displace-
ment limit state. When the closest intersection point was obtained,
two additional intermediate points were obtained. This information
was added to the available information, along with the informa-
tion about the intersection point. For the frequency constraint, four
TANA2 were constructed at various design points, and these ap-
proximations were blended into a third MPA. The points obtained
in the intersection point search were common for all of the three
limit states.

Once these limit states were available as closed-form MPAs,
Monte Carlo simulation was used to obtain the system failure prob-
ability. The results are presented in Table 3. The results obtained
from the MPA are compared with the actual Monte Carlo results
and FORM results. The � rst-order bound method could approxi-
mate the upper bound of the system failure probability very accu-
rately, to within 4% error. However, the estimated lower bound was
highly inaccurate, and this would make the decision making based
on theestimatedbounda dauntingtask.The proposedmethodwould
ef� ciently obtain the system failure probability for structural sys-
tems that have highly nonlinear limit states with high accuracy.The
results show that the system failure probabilityobtainedby the pro-
posed method had an error of 8.59% on the conservative side. A
certain percentage of difference is inevitable in between the Monte
Carlo estimation and MPA due to the way these methods represent
the actual response.

Summary
The computation of system reliability for multiple implicit limit

states is a complex and time-consuming task. The use of MPA en-
ables modeling of the n-dimensional joint failure domain for build-
ing surrogate models that can be used in a Monte Carlo simulation.
Because the MPA of each limit-state function is explicit, this ap-
proximation considerablyreduces the computational effort without
sacri� cing much accuracy. Because information at more points is
used to construct the MPA of each limit-state function, the MPA is
accurate over a larger region compared to the one- and two-point
approximations. It is possible to provide a good prediction of the
intersection points of different limit-state functions.

By the use of the availablemethods in the literature,the boundson
the systemfailureprobabilitycanbeobtained.Theseboundsare esti-
mated by usingapproximationtechniques,unlike the n-dimensional
integration,which is more accurate.This can lead into an additional
uncertainty in the bounds. In MPA, the failure probability of the
system is available as a single value, and it takes into account the
correlation between the limit states. After solving a class of prob-
lems with MPA, it is possible to understand where the result stands
in comparison to the Monte Carlo simulation.

MPA has a tremendous potential for problems where the limit
states are not unimodal and exhibit high nonlinearity.In those cases,
the MPP search starts from a mean point and approaches from one
side of the nonlinear surface. The points generated in the search
may represent a very small region of the nonlinear domain. If an
approximation is built only using the searched failure points, then
the system reliabilitymay not include the complete failure region.In
caseswhere TANA2 convergesrapidlyto theMPP, theentiredomain
may not have been investigated. In those situations, a design of
experimentsapproachfor choosingthe additionalpoints forbuilding
several local approximations is appropriate. The idea is to capture
the failure region accurately using multiple approximations.

Appendix: MPA Based on Local Approximations
The MPA10 can be regarded as the connection of many local

approximations. With function and sensitivity information already
available at a series of points, one local approximation is built at
each point. All local approximations are then integrated into an
MPA by the use of a weighting function. The weighting functions
are selected such that the approximation reproduces function and
gradient information at the known data points.

The local approximationsdiscussed in this section are TANA2s.9

The function F.X/ and gradient@F.X/=@x information is available
at

Xk D .x1;k ; x2;k ; : : : ; xn;k /T ; k D 1; 2; : : : ; K

The MPA can be written in terms of the local approximationsas

QF.X/ D
KX

k D 1

Wk .X/ QFk .X/ (A1)

where Wk is a weighting function

Wk .X/ D Ák .X/
PK

j D 1 Á j .X/
(A2)

and QFk .X/ is the TANA2. Wk.X/ adjusts the contribution of QFk .X/
to QF.X/ in Eq. (A1). Here, Ák.X/ is called a blending function and
has its maximum of 1 at Xk and vanisheswhen Xk is very far from X.

The important details of the TANA29 are presented hereafter.
Further details can be found in Ref. 6. The physical variables are
transformed to the intervening variables using the relation

yi D x pi
i ; i D 1; 2; : : : ; n

where the exponents pi represent the nonlinear indices and are dif-
ferent for each variable, yi is the intervening variable, and xi is the
physical variable. Information at two points, namely, the compar-
ison point X1and the expansion point X2, is used in building the
approximation. The approximation is obtained by expanding the
function at the expansion point X2 as

Qg.X / D g.X2/ C
nX

i D 1

@g.X2/

@xi

x1 ¡ pi
i;2

pi

¡
x pi

i ¡ x pi
i;2

¢

C 1

2
"

nX

i D 1

¡
x pi

i ¡ x pi
i;2

¢2
(A3)

This equation is a second-orderTaylor series expansion in terms
of the intervening variables, in which the Hessian matrix has only
diagonal elements of the same value ". Therefore, this approxima-
tion does not need the calculation of second-orderderivatives. The
error from the approximateHessian matrix is partially corrected by
adjusting the nonlinearity index pi . In contrast to the true quadratic
approximation, this approximation is closer to the actual function
for highly nonlinear problems due to its adaptability.

Equation (A3) has n C 1 unknown constants, so that n C 1 equa-
tions are required. When Eq. (A3), is differentiatedn equations are
obtained by matching the derivativesavailableat the previous point
X1:

@g.X1/

@xi

D
³

xi;1

xi;2

´pi ¡ 1
@g.X2/

@ xi

C "
¡
x pi

i ¡ x pi
i;2

¢
x pi ¡ 1

i;1 pi

i D 1; 2; : : : ; n (A4)

Anotherequationis obtainedbymatchingtheexactand approximate
function values with the previous point X1:

g.X1/ D g.X2/ C
nX

i D 1

@g.X2/

@xi

x1 ¡ pi
i;2

pi

¡
x pi

i;1 ¡ x pi
i;2

¢

C
1

2
"

nX

i D 1

¡
x pi

i;1 ¡ x pi
i;2

¢2
(A5)

In this method, the exact function and derivativevalues are equal to
the approximate function and derivative values, respectively, at the
previous and current points.
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Several blending functionsin Eq. (A2) can used to make the MPA
reproduce the exact function and gradient values at the data points
where the local approximation was built. There are at least three
blending functions that could meet this requirement. They are

Ák .X/ D 1=[exp.hk / ¡ 1] (A6)

Ák .X/ D 1=log.hk C 1/ (A7)

Ák .X/ D 1=hk (A8)

where

hk D

"
nX

i D 1

.xi ¡ xi;k/
2

#m

(A9)

and where m is a positive integer. Additionally, it is recommended,
fromcomputationalconsiderations,that the designspacebenormal-
ized as xi 2 [0; 1] to measure the weighting function.Equation (A8)
was used in this work.

With each of Eqs. (A6–A9), the weighting function of Eq. (A2)
has the properties

Wk.X j / D ±k j ; 0 · Wk.X j / · 1 (A10)

lim
xi ! §1

Wk.X/ D 1
K

(A11)

KX

k D 1

Wk .X/ D 1 (A12)

The weighting function varies between 0 and 1, and the summa-
tion of all weighting functions is 1. The following propertiescan be
shown for each blending function given in Eqs. (A6–A8):

@Wk.X j /

@xi
D 0 (A13)

When Eq. (1) is differentiated,

@ QF.X/

@xi
D

KX

k D 1

µ
@Wk .X/

@xi

QFk .X/ C Wk .X/
@ QFk .X/

@xi

¶

i D 1; 2; : : : ; n (A14)

From Eqs. (A1), (A10), (A13), and (A14), the following are
obtained:

QF .X j / D QF j .X j / D F.X j /; j D 1; 2; : : : ; K (A15)

@ QF.X j /

@xi
D

@ QF j .X j /

@ xi
D

@ F.X j /

@xi

i D 1; 2; : : : ; n; j D 1; 2; : : : ; K (A16)

Equations (A15) and (A16) show that the MPA has the same zero-
order and � rst-order information as the original function at the data
points:

lim
xi ! §1

QF .X/ D 1
K

KX

k D 1

QFk .X/ (A17)

The MPA is an average value of all TANA2 estimations when a
design point is far from every data point.

Reliability analysis involves iterations, which require implicit
functionevaluationsand gradientevaluationsthat are expensiveand
come from � nite element simulation. Therefore, the use of approx-
imations helps reduce the cost involved in each analysis, without
sacri� cing the accuracy of the results. Multipoint function approx-
imations are more suitable for system reliability analysis where the
failure domain is the result of multiple failure criteria because each
of the failure surfaces has to be approximated separately and then
combinedto representthe failuredomain.The two-pointapproxima-
tion (TANA2) discussed earlier is used as the local approximation.
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